First direct observation of sputtered lunar oxygen

A. Vorburger1, P. Wurz2, S. Barabash3, M. Wieser2, Y. Futaana2, M. Holmström2, A. Bhardwaj3, and K. Asamura4

1Physikalisches Institut, University of Bern, Bern, Switzerland, 2Swedish Institute of Space Physics, Kiruna, Sweden, 3Space Physics Laboratory, Vikram Sarabhai Space Center, Trivandum, India, 4Institute of Space and Astronautical Science, Sagamihara, Japan

Abstract We present the first direct measurement of neutral oxygen in the lunar exosphere, detected by the Chandrayaan-1 Energetic Neutral Analyzer (CENA). With the lunar surface consisting of about 60% of oxygen in number, the neutral oxygen detected in CENA’s energy range (11 eV–3.3 keV) is attributed to have originated from the lunar surface, where it was released through solar wind ion sputtering. Fitting of CENAs mass spectra with calibration spectra from ground and in-flight data resulted in the detection of a robust oxygen signal, with a flux of 0.2 to 0.4 times the flux of backscattered hydrogen, depending on the solar wind helium content and particle velocity. For the two solar wind types observed, we derive subsolar surface oxygen atom densities of \(N_O = (1.1 \pm 0.3) \times 10^{12} \text{ m}^{-3} \) and \((1.4 \pm 0.4) \times 10^{12} \text{ m}^{-3} \), respectively, which agree well with earlier model predictions and measured upper limits. From these surface densities, we derive column densities of \(N_C = (1.5 \pm 0.5) \times 10^{13} \text{ m}^{-2} \) and \((1.6 \pm 0.5) \times 10^{13} \text{ m}^{-2} \). In addition, we identified for the first time a helium component. This helium is attributed to backscattering of solar wind helium (alpha particles) from the lunar surface as neutral energetic helium atoms, which has also been observed for the first time. This identification is supported by the characteristic energy of the measured helium atoms, which is roughly 4 times the energy of reflected solar wind hydrogen, and the correlation with solar wind helium content.

1. Introduction

The Moon has a very tenuous, surface-bound atmosphere, also called exosphere. The main sources that feed the lunar atmosphere are (1) thermal desorption, (2) backscattering of neutralized precipitating solar wind ions, (3) ion sputtering of lunar surface material by precipitating solar wind ions, (4) photon-stimulated desorption, and (5) micrometeoroid impact vaporization.

Thermal atmospheric desorption releases lunar volatile species such as Ar, Kr, CH₄, H₂, He, and Xe in the energy range 0.01–0.03 eV into the lunar exosphere [Wurz et al., 2007]. The backscatter products are expected to resemble the main constituents making up the solar wind (H, He, and others [Wurz, 2001]) and have typical energies of up to 50% of the impinging solar wind energy [Futaana et al., 2012]. Since sputtering releases lunar surface material located in the outermost layer of the lunar regolith, the main sputter products expected are O, Si, Mg, Ca, Al, Fe, and Na [Futaana et al., 2006]. The characteristic energies of sputter products are 2–3 eV [Wurz et al., 2007], but particles with energies of up to a few 100 eV are expected. Photon-stimulated desorption mainly releases lunar alkali species (Na, K), and possibly water, with characteristic energies between 0.1 eV and 0.4 eV from the lunar surface [e.g., Wurz and Lammer, 2003, and references therein]. Micrometeorite impact vaporization brings refractory elements in the energy range 0.2–0.4 eV into the exosphere [Wurz and Lammer, 2003; Wurz et al., 2007]. Simulations show that micrometeorite impact vaporization and ion sputtering contribute approximately equally to the release of gas over the subsolar region for fluxes typical of the solar wind at 1 AU [Wurz et al., 2007; Sarantos et al., 2012].

Neutral species having so far been directly observed in the lunar atmosphere include He, Ar, Na, K, Rn, Po, H, and H₂. The first two species, He and Ar, were measured during the Apollo era by the Lunar Atmospheric Composition Experiment, which was deployed on the lunar surface by the Apollo 17 mission [Hoffman et al., 1973; Hoffman and Hodges, 1975]. Rn and Po, both created in the lunar interior through radioactive decay, were detected by the Apollo 15 and 16 Alpha Particle Spectrometers [Gorenstein and Bjorkholm, 1973] and by the Alpha Particle Spectrometer onboard Lunar Prospector [Lawson et al., 2005]. Potter and Morgan
[1988] and Tyler et al. [1988] reported on the ground-based spectroscopy detection of K and then Na in the lunar exosphere, with the Na to K ratio being the stoichiometric relative to the lunar surface. This suggests that these species are released from the lunar surface with a process that has similar yields such as impact vaporization and photon-stimulated desorption. Flynn and Stern [1996] searched for other constituents in the data of the spectrograph of the McDonald Observatory but could only determine upper limits for Si, Al, Ca, Fe, Ti, Ba, and Li and found that the species’ densities relative to alkalies (Na and K) were more than an order of magnitude lower than a stoichiometric model would predict. Cook et al. [2013] and Stern et al. [2013] recently presented more stringent upper limits for many of these constituents and reported first H2 measurements conducted by the Lyman Alpha Mapping Project instrument aboard NASA’s Lunar Reconnaissance Orbiter.

McComas et al. [2009] and Wieser et al. [2009] presented first observations of backscattered neutral atoms from the lunar surface. Analyses of these measurements yielded unexpected high neutral hydrogen backscatter ratios of up to 0.25 [Vorburger et al., 2013]. So far, only backscattered hydrogen neutrals and ions have been observed [e.g., McComas et al., 2009; Wieser et al., 2009; Saito et al., 2008; Futaana et al., 2010; Lue et al., 2011]. To date, sputtered neutral lunar surface material has not been directly observed. Lunar surface sputtering, in contrast to laboratory sputtering, is a complex process, and the sputter yield is influenced by factors such as surface roughness, grain chemical heterogeneity, sputter site microslope, grain exposure dosage, and surface temperature [Stern, 1999]. Oxygen makes up more than 60% of the surface [Wurz et al., 2007]; therefore, it is the most promising sputter product to look for.

2. Instrumentation

For this work we analyzed measurements conducted by the Sub-keV Atom Reflecting Analyzer (SARA) [Bhardwaj et al., 2005; Barabash et al., 2009] onboard the Chandrayaan-1 spacecraft [Goswami and Annadurai, 2009]. The mission operated from October 2008 until the end of August 2009, during which the spacecraft was first in a 100 km and later in a 200 km circular polar orbit. Chandrayaan-1’s orbit around the Moon took about 2 h, half of which it spent on the sunlit side. SARA’s main scientific goal was to investigate the interaction between the solar wind particles and the lunar surface. The instrument consisted of two sensors (i.e., two time-of-flight mass spectrometers) and a digital processing unit. Whereas the first sensor, the Solar Wind Monitor (SWIM) [McCann et al., 2007], measured ions in the energy range 10 eV–15 keV, the second sensor, the Chandrayaan-1 Energetic Neutral Analyzer (CENA) [Kazama et al., 2007] measured neutrals in the energy range 11 eV–2.2 keV. The two sensors were mounted at a 90° angle to each other, in such a way that CENA’s 160° × 17° field of view was nadir looking (toward the lunar surface) and the 180° SWIM field of view pointed 90° to nadir. The fields of view of SWIM and CENA are divided into 15 and seven angular sectors [cf. Futaana et al., 2010], respectively, which provide information about the particle’s point of origin. In addition, both SWIM and CENA were capable of mass and energy discrimination. Since we used only CENA data for this analysis, we will only explain CENA’s functional principle herein. Both sensors have very similar functional principles, though.

CENA consists of four subsystems [Bhardwaj et al., 2005; Barabash et al., 2009]: (1) an ion deflector responsible for rejecting charged particles from entering the instrument, (2) a conversion surface for positively ionizing the incoming neutral particles, (3) an energy analysis system blocking out photons and providing coarse energy analysis, and (4) a time-of-flight section responsible for mass analysis.

The electrostatic deflector at the entrance consists of two electrodes with a potential difference of 5 kV and sweeps out charged particles entering the system. The maximum rejection energy is 15 keV. Neutral particles, having passed the electrostatic deflector, strike a conversion surface made of a highly polished silicon wafer coated with MgO at grazing incidence. When interacting with the conversion surface, the neutral particles are converted with a certain efficiency to positive ions [Wieser et al., 2002]. The positively ionized particles then have to pass a wave-type electrostatic analyzer. The electrostatic analyzer consists of electrodes of controlled potential. By varying the electrodes’ potentials coarse energy analysis is achieved. In addition to the energy analysis, the electrostatic analyzer is able to effectively block out UV photons. Before particles reach the time-of-flight section, they are post accelerated by a voltage of about 1.5 keV to reduce
spreading in energy caused by the interaction with the conversion surface and to increase the mass resolution of the time-of-flight analysis. The post accelerated particles then enter the time-of-flight section where they hit a highly polished monocrystalline tungsten START surface and produce secondary electrons. These electrons are detected by a START microchannel plate assembly and produce a start pulse. The ions themselves, most of which have been neutralized upon interaction with the START surface, are reflected toward the STOP microchannel plates and produce a stop pulse. Since the distance traveled and the time required are known, the particles’ velocities can be computed. These, together with the previous energy analysis, give the complete particles’ mass and energy information.

Concerning measurement accuracy, three main sources introduce uncertainties in the particle's mass spectra: (1) different conversion efficiencies for different species, (2) energy straggling at the interaction with conversion and START surfaces, and (3) angular scattering on the START surface resulting in time-of-flight distance spreading.

3. Methods

Table 1 in Wurz [2001] presents the elemental composition of the solar wind plasma. As one can see from this table, the solar wind consists of ≈ 96% of hydrogen, of ≈ 4% of alpha particles, and to ≈ 1% of heavy elements (mostly carbon, nitrogen, oxygen, neon, magnesium, silicon, and iron). Concerning backscattered solar wind particles, hydrogen and helium are therefore the most promising elements to look for. The molecular fractions of four different lunar reference suite soils are presented in Wurz et al. [2007, Table 2].

According to this table the lunar surface consists of about 60% oxygen in number, about 17% silicon, about 7% aluminum, and to a few percent of carbon, magnesium, iron, sodium, titanium, calcium, manganese, and chromium. CENA’s detection efficiency for the different species relies on the species’ ionization potential (cf. section 2). Even though the ionization potential for oxygen is higher than the ionization potential of the other elements, its much higher abundance in lunar regolith more than makes up for this drawback. In addition, CENA’s mass resolution is proportional to mass, i.e., the peak width is proportional to the peak position. This means that the oxygen peak is narrower and therefore better defined than the silicon peak (the second most abundant element in the lunar surface) and therefore better distinguishable from the background. Oxygen is therefore the most promising sputtered candidate to search in CENA’s mass spectra.

The most common species expected to be coming from the sunlit lunar surface in CENA’s energy range are H, He, and O. In addition, since CENA’s UV shielding is not perfect, CENA also measures a small UV background. CENA’s mass spectra are thus expected to be mainly a mixture of H, He, O, and UV. To resolve the measured mass spectra, we therefore first determined the reference mass spectra for H, He, O, and UV.

The spectral shape of the UV background signal was computed from 21 orbits that showed clear UV contamination, which occurred when the Sun vector pointed toward the center of CENA’s aperture. Since the obtained average spectral shape still contained small variations due to the limited statistics, it was smoothed with a bin width of three. The UV background signal thus obtained is shown in Figure 1 (red long dashed lines).

Since hydrogen from the lunar surface in CENA’s energy range has its main origin in solar wind backscattering, we searched for orbits where the hydrogen content in the solar wind is more than 99.7%, i.e., orbits where the solar wind can be assumed to be purely hydrogen. Knowledge of the solar wind alpha to proton ratio (as well as of the particle velocity and the particle flux) was taken from the Solar Wind Experiment (WIND/SWE) data with a time resolution of 2 min (http://cdaweb.gsfc.nasa.gov/istp_public), which we time shifted from the L1 Lagrangian point to Chandrayaan-1’s position in orbit around the Moon.

We found five such orbits, the average of which was again smoothed and which is shown in Figure 1 by the green dotted lines. Finally, the helium and oxygen reference mass spectra were computed from calibration data. They are shown by the blue dashed and purple dash-dotted lines in Figure 1, respectively. All reference mass spectra in Figure 1 are normalized to 1.
Figure 1. Hydrogen (green dotted), helium (blue dashed), oxygen (purple dash-dotted), and UV (red long dashed) reference mass spectra. All spectra are normalized to one.

In a second step, to resolve CENA’s mass spectra, the measured mass spectra were fitted with these four reference mass spectra using a nonnegative least squares solver. The fitting was carried out in two steps. First, the hydrogen and UV peaks, which dominate the mass spectra, were removed to obtain a signal which possibly contains backscattered helium and sputtered lunar oxygen, if these species are present in the mass spectra at all. The remaining residual was then fitted with the helium and oxygen reference mass spectra simultaneously. Equation (1) describes the two fitting steps:

$$\begin{align*}
 M_{\text{CENA}} &= k_H \cdot M_{\text{H}} + k_{\text{UV}} \cdot M_{\text{UV}} + \text{res}_1 \\
 \text{res}_1 &= k_{\text{He}} \cdot M_{\text{He}} + k_{\text{O}} \cdot M_{\text{O}} + \text{res}_2,
\end{align*}$$

where M_{CENA} is the mass spectrum measured by CENA, $M_{\text{H}}, M_{\text{He}}, M_{\text{O}},$ and M_{UV} are the reference mass spectra for hydrogen, helium, oxygen, and UV, respectively, $k_H, k_{\text{He}}, k_{\text{O}},$ and k_{UV} are the hydrogen, helium, oxygen, and UV fit coefficients determined by the nonnegative least squares solver, res_1 is the residual remaining after having fitted H and UV, and res_2 is the final remaining residual.

4. Results

To search for oxygen in CENA’s mass spectra we created two groups of CENA data: one group where the solar wind helium content was very low (<0.5%) and one group where the solar wind helium content was high (>3.5%). The two He contents were chosen so that each group contains at least 12 orbits. The reason for the creation of these two groups is that helium is a very effective sputter agent. According to Wurz et al. [2007], helium is 8 times as effective in sputtering as hydrogen, i.e., 5% of alpha particles typically contribute 30% of the total sputter yield. A significant difference in the ratio between the backscattered hydrogen and the sputtered oxygen flux is therefore expected for these two groups. For each group, Tables 1 and 2 present the orbit numbers, the CENA time intervals for which we have corresponding WIND/SWE data (the complete CENA time interval is about 1 h), the WIND/SWE time intervals, and the average solar wind helium fraction, particle velocity, and particle flux. Note that the WIND time stamps denote the times when the measurements were taken and not the time-shifted time stamps mentioned above. Shown are the complete time intervals for which WIND/SWE data exists, but we only considered measurements where the quality flag was set equal to 10, i.e., “Solar wind parameters OK.” In addition, for both groups, the last row presents the average solar wind helium fraction, particle velocity, and particle flux.

For both groups, we computed the expected oxygen and hydrogen fluxes. Assuming that hydrogen in CENA’s energy range solely originates from backscattered solar wind protons and with oxygen being released from the lunar surface only through sputtering (cf. section 1), we compute the expected hydrogen flux according to backscatter theory and the expected oxygen flux according to sputter theory. For both species, the total flux at a certain energy given in [s⁻¹ cm⁻² eV⁻¹] is simply the product between the impinging solar wind flux, Φ_{sw} [s⁻¹ cm⁻²], either the oxygen sputter yield, Y^{sp}_O, or the hydrogen backscatter ratio, R_H, and the energy distribution function for sputtering or backscattering, $f^{\text{sp}}_O(E)$ [eV⁻¹] or $f^{\text{bs}}_H(E)$ [eV⁻¹], respectively.

$$\begin{align*}
 \Phi^{\text{sp}}_O(E) &= \Phi_{\text{sw}} \cdot Y^{\text{sp}}_O \cdot f^{\text{sp}}_O(E) \\
 \Phi^{\text{bs}}_H(E) &= \Phi_{\text{sw}} \cdot R_H \cdot f^{\text{bs}}_H(E).
\end{align*}$$

(2)
Table 1. Orbits Making Up the Low Helium Content Group

<table>
<thead>
<tr>
<th>Orbit Number</th>
<th>Start CENA (yyyy:ddd:mm:ss)</th>
<th>Stop CENA (yyyy:ddd:mm:ss)</th>
<th>Start SWE (yyyy:ddd:mm:ss)</th>
<th>Stop SWE (yyyy:ddd:mm:ss)</th>
<th>He Fraction (%)</th>
<th>v_{sw} (km/s)</th>
<th>Φ_{sw} (10^{12} m$^{-2}$s$^{-1}$)</th>
<th>$\gamma_{\text{sp}}^{\text{O}}$ (10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3026</td>
<td>2009 201 09 57 40</td>
<td>2009 201 12 05 24</td>
<td>2009 201 08 58 25</td>
<td>2009 201 11 08 51</td>
<td>0.20</td>
<td>308</td>
<td>4.19</td>
<td>6.1</td>
</tr>
<tr>
<td>3025</td>
<td>2009 201 07 49 51</td>
<td>2009 201 09 57 36</td>
<td>2009 201 06 51 11</td>
<td>2009 201 08 58 25</td>
<td>0.22</td>
<td>311</td>
<td>1.67</td>
<td>6.1</td>
</tr>
<tr>
<td>3033</td>
<td>2009 202 02 09 56</td>
<td>2009 202 02 33 08</td>
<td>2009 202 01 15 09</td>
<td>2009 202 01 37 60</td>
<td>0.26</td>
<td>323</td>
<td>6.96</td>
<td>6.1</td>
</tr>
<tr>
<td>2781</td>
<td>2009 179 18 27</td>
<td>2009 179 18 02 23</td>
<td>2009 179 15 10 36</td>
<td>2009 179 16 54 59</td>
<td>0.27</td>
<td>377</td>
<td>2.57</td>
<td>6.0</td>
</tr>
<tr>
<td>2947</td>
<td>2009 194 09 41 29</td>
<td>2009 194 10 53 13</td>
<td>2009 194 08 22 46</td>
<td>2009 194 09 32 54</td>
<td>0.28</td>
<td>345</td>
<td>1.57</td>
<td>6.0</td>
</tr>
<tr>
<td>3024</td>
<td>2009 201 07 34 51</td>
<td>2009 201 07 49 47</td>
<td>2009 201 06 36 30</td>
<td>2009 201 06 49 34</td>
<td>0.34</td>
<td>316</td>
<td>4.55</td>
<td>6.1</td>
</tr>
<tr>
<td>2656</td>
<td>2009 168 16 18 10</td>
<td>2009 168 16 36 42</td>
<td>2009 168 14 54 49</td>
<td>2009 168 15 11 08</td>
<td>0.36</td>
<td>300</td>
<td>6.96</td>
<td>6.1</td>
</tr>
<tr>
<td>3001</td>
<td>2009 199 04 42 50</td>
<td>2009 199 06 46 30</td>
<td>2009 199 03 35 34</td>
<td>2009 199 05 36 16</td>
<td>0.38</td>
<td>310</td>
<td>1.41</td>
<td>6.1</td>
</tr>
<tr>
<td>2999</td>
<td>2009 163 13 19 33</td>
<td>2009 163 15 27 01</td>
<td>2009 163 11 24 43</td>
<td>2009 163 13 38 18</td>
<td>0.41</td>
<td>293</td>
<td>2.13</td>
<td>6.2</td>
</tr>
<tr>
<td>3032</td>
<td>2009 201 23 20 40</td>
<td>2009 202 00 28 08</td>
<td>2009 201 22 22 19</td>
<td>2009 201 23 32 24</td>
<td>0.41</td>
<td>330</td>
<td>8.01</td>
<td>6.1</td>
</tr>
<tr>
<td>2447</td>
<td>2009 150 02 16 04</td>
<td>2009 150 03 56 24</td>
<td>2009 150 01 05 31</td>
<td>2009 150 02 43 18</td>
<td>0.44</td>
<td>369</td>
<td>1.72</td>
<td>6.0</td>
</tr>
<tr>
<td>3000</td>
<td>2009 199 02 40 51</td>
<td>2009 199 04 14 14</td>
<td>2009 199 01 34 54</td>
<td>2009 199 03 06 11</td>
<td>0.46</td>
<td>308</td>
<td>4.82</td>
<td>6.2</td>
</tr>
<tr>
<td>2999</td>
<td>2009 199 00 27 07</td>
<td>2009 199 02 20 18</td>
<td>2009 198 23 21 07</td>
<td>2009 199 01 12 02</td>
<td>0.46</td>
<td>311</td>
<td>2.86</td>
<td>6.2</td>
</tr>
<tr>
<td>2600</td>
<td>2009 163 15 27 05</td>
<td>2009 163 17 34 37</td>
<td>2009 163 13 38 18</td>
<td>2009 163 15 43 51</td>
<td>0.47</td>
<td>290</td>
<td>2.36</td>
<td>6.2</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35</td>
<td>321</td>
<td>3.70</td>
<td>6.1</td>
</tr>
</tbody>
</table>

*Shown are the orbit numbers, the CENA time intervals (year, day of year, hour, minute, second) for which we have corresponding WIND/SWE data, the WIND/SWE time intervals (year, day of year, hour, minute, second), the average solar wind helium fraction, particle velocity, particle flux, and the sputtering yield per solar wind ion. The last row presents the average solar wind helium fraction, particle velocity, particle flux, and oxygen sputter yield for the low helium content group.
Table 2. Orbits Making Up the High Helium Content Group

<table>
<thead>
<tr>
<th>Orbit Number</th>
<th>Start CENA (yyyy:ddd:hh:mm:ss)</th>
<th>Stop CENA (yyyy:ddd:hh:mm:ss)</th>
<th>Start SWE (yyyy:ddd:hh:mm:ss)</th>
<th>Stop SWE (yyyy:ddd:hh:mm:ss)</th>
<th>He Fraction (%)</th>
<th>v_{sw} (km/s)</th>
<th>Φ_{sw} (10^{12} m$^{-2}$s$^{-1}$)</th>
<th>Y_{sp}O (10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2945</td>
<td>2009 194 05 25 52</td>
<td>2009 194 07 33 36</td>
<td>2009 194 04 05 08</td>
<td>2009 194 06 12 20</td>
<td>3.65</td>
<td>338</td>
<td>2.23</td>
<td>7.2</td>
</tr>
<tr>
<td>2964</td>
<td>2009 195 21 54 06</td>
<td>2009 196 00 01 50</td>
<td>2009 195 21 04 20</td>
<td>2009 195 23 11 31</td>
<td>3.67</td>
<td>520</td>
<td>2.16</td>
<td>6.1</td>
</tr>
<tr>
<td>2956</td>
<td>2009 195 04 51 42</td>
<td>2009 195 06 56 18</td>
<td>2009 195 04 01 47</td>
<td>2009 195 06 07 19</td>
<td>4.27</td>
<td>540</td>
<td>1.90</td>
<td>6.0</td>
</tr>
<tr>
<td>2944</td>
<td>2009 194 03 18 04</td>
<td>2009 194 05 25 48</td>
<td>2009 194 01 57 53</td>
<td>2009 194 04 05 08</td>
<td>4.53</td>
<td>342</td>
<td>2.24</td>
<td>7.5</td>
</tr>
<tr>
<td>2955</td>
<td>2009 195 02 43 57</td>
<td>2009 195 04 51 38</td>
<td>2009 195 01 54 35</td>
<td>2009 195 04 01 47</td>
<td>4.74</td>
<td>542</td>
<td>2.09</td>
<td>6.1</td>
</tr>
<tr>
<td>2928</td>
<td>2009 192 17 13 50</td>
<td>2009 192 19 21 30</td>
<td>2009 192 16 05 55</td>
<td>2009 192 18 14 44</td>
<td>5.49</td>
<td>433</td>
<td>2.26</td>
<td>7.1</td>
</tr>
<tr>
<td>2954</td>
<td>2009 195 00 36 09</td>
<td>2009 195 02 43 53</td>
<td>2009 194 23 39 15</td>
<td>2009 195 01 54 35</td>
<td>5.86</td>
<td>505</td>
<td>2.28</td>
<td>6.6</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.57</td>
<td>472</td>
<td>2.22</td>
<td>6.6</td>
</tr>
</tbody>
</table>

aShown are the orbit numbers, the CENA time intervals (year, day of year, hour, minute, second) for which we have corresponding WIND/SWE data, the WIND/SWE time intervals (year, day of year, hour, minute, second), the average solar wind helium fraction, particle velocity, particle flux, and the sputtering yield per solar wind ion. The last row presents the average solar wind helium fraction, particle velocity, particle flux, and oxygen sputter yield for the high helium content group.
Figure 2. Energy distribution of sputtered lunar oxygen as given in Wurz et al. [2007, equation (1)], computed for an oxygen surface binding energy of 2 eV and two different solar wind types. Type 1 has a He content of 0.35% and a proton velocity 321 km s$^{-1}$ (solid line), and type 2 has a He content of 4.57% and a proton velocity of 472 km s$^{-1}$ (dashed line). The dotted vertical lines show where the oxygen sputter yield curves become 0 (119 eV and 323 eV).

Wurz et al. [2007] and Futaana et al. [2012] presented $f_{sp}^O(E)$ and $f_{bs}^H(E)$, respectively. For convenience, we restate these two functions here

$$f_{sp}^O(E) = \frac{6E}{3 - 8\sqrt{E_b/E_c}} \left(1 - \sqrt{\frac{E + E_b}{E_c}}\right)$$

$$f_{bs}^H(E) = \frac{E}{kT} \exp\left(-\frac{E}{kT}\right).$$

where E_b is the surface binding energy of the sputtered particle, E_c is the cutoff energy, i.e., maximum energy that can be transferred in a binary collision, and where kT is the characteristic energy, which is given by $kT = V_{sw} \cdot 0.273 - 1.99$.

A model describing sputter release from the lunar surface was presented by Wurz et al. [2007]. From Figure 2 presented therein, values for Y_{sp}^O can be directly obtained. As mentioned above, they also present a mathematical description of $f_{sp}^O(E)$. For our analysis, we computed $f_{sp}^O(E)$ for two solar wind types, the helium content and particle velocity of which are given by last rows of Tables 1 and 2, respectively. The oxygen binding energy was taken to be equal to 2 eV (according to simulations conducted using the TRIM software package (http://www.srim.org/)). The two thus computed sputtering curves are shown in Figure 2. As one can see from this figure, Y_{sp}^O becomes 0 at 119 eV and 323 eV (dotted vertical lines), respectively. This limit is given by the maximum energy that can be transferred in a binary collision. Any sputtered oxygen atom detected by CENA at energies higher than these two energy thresholds can therefore be considered to be background.

Analysis of the mass spectra was divided into two energy ranges, below and above 119 eV and 323 eV, respectively. The hydrogen, helium, oxygen, and UV fit as well as the total fit (=hydrogen+helium+oxygen+UV) fits for the low, and the high-energy mass spectra of the two helium content groups are presented in Figure 3 and Table 3, with energy thresholds as mentioned above. Note that helium was only determined to be present in the high-energy range of the high helium group. Figure 3d is therefore the only panel showing a helium curve. To allow easier comparison between the four different measured mass spectra, we present the normalized measured mass spectra associated with the low- and the high-energy ranges of the low and the high helium content groups in one plot, namely, in Figure 4. Also shown, for comparison, are the normalized helium and oxygen reference mass spectra, which were, for better visibility, divided by 100.

As expected, the oxygen fit is in both cases significantly higher in the low-energy part than in the high-energy part, where we theoretically should measure no oxygen at all.

In a first analysis, we compute the ratio between the sputtered oxygen contained in CENA’s complete energy range between the low and the high helium group. The fit coefficients for CENA’s complete energy range
are shown in the two bottom rows of Table 3, whereas the fits themselves are presented in Figure 5. Since we now compare the sputtered oxygen fluxes from two different solar wind types, the oxygen sputter yield, which is solar wind composition and velocity dependent, has to be taken into account. Wurz et al. [2007] present in Figure 2 sputter yields for solar wind consisting to 95% of H and 5% of He. We recomputed these sputter yields for the actual solar wind helium fractions and present them also in Tables 1 and 2 (last column). The average sputter yields for the two solar wind types are ~0.06 and ~0.07. In addition, we also take the surface porosity into account, since it linearly scales the sputter yield [cf. Wurz et al., 2007, and references therein]. As Wurz et al. [2007] in their calculations, we use a porosity of 50%, which seems to be a good value for the porosity of the uppermost lunar surface layer. The average sputter yields are thus reduced to ~0.03 and ~0.035. With these sputter yield values, the high helium content solar wind type was expected to sputter ~1.2 times the oxygen from the lunar surface as the low helium content solar wind type. The ratio obtained from our fits is ≃1.6.

In a second analysis, we compute the ratio between the backscattered hydrogen flux and the sputtered oxygen flux. The hydrogen backscatter ratio was recently computed from CENA data to be equal to 0.16 ± 0.05
Figure 4. Comparison between the measured mass spectra presented in Figures 3a to 3d. Shown are the low-energy range of the low helium group (black solid), the high-energy range of the low helium group (magenta dash-dotted), the low-energy range of the high helium group (orange dashed), and the high-energy range of the high helium group (red dash-dotted). Also shown, for comparison, are the helium (blue dashed) and the oxygen (purple dash-dotted) reference mass spectra, which were, for better visibility, divided by 100.

at the subsolar point [Vorburger et al., 2013], and the energy distribution curve for backscattered hydrogen (see above), also recently derived from CENA data, is given in Futana et al. [2012]. To compare the theoretical fluxes to the fluxes measured by CENA we have to correct for CENA's different detection efficiencies for different species. In addition, we have to take into account that CENA only covers a certain fraction of the respective energy distributions. Figures 6a and 6b show the energy distribution functions for backscattered hydrogen and sputtered oxygen particles and the fluxes as they can theoretically be detected by CENA. Also shown, by the two dotted vertical lines, are CENA's lower and upper energy bounds (11 eV and 3.3 keV).

As one can see from this figure, especially in the case of sputtering, only a fraction of the complete energy spectrum is observed by CENA. We thus derived the ratio $\frac{\Phi_{H}}{\Phi_{O}}$ (see Appendix A) that corrects for both the detection efficiency and CENA’s energy interval. The ratio between the total backscattered hydrogen flux and the total sputtered oxygen flux can thus be computed from the measurements according to the following equation:

$$\frac{\Phi_{H}}{\Phi_{O}} = \frac{k_{H}}{k_{O}} \cdot \frac{\varepsilon_{H}^{\text{det}}}{\varepsilon_{O}^{\text{det}}}$$

Figure 5. Complete energy range (low energy + high energy) of the measured mass spectra (a) for the low helium group and (b) for the high helium group. Shown are the average measured mass spectra (solid black) and the best fits for H (green dotted), He (blue dashed; nonexistent), O (purple dash-dotted), and UV (red long dashed).
Table 4. Hydrogen-to-Oxygen Flux Ratio for the Two Solar Wind Types During Which the Measurements Were Conducteda

<table>
<thead>
<tr>
<th>He Fraction</th>
<th>ϕ_{H}^{bs}/ϕ_{O}^{sp}</th>
<th>ϕ_{H}^{bs}/ϕ_{O}^{sp}</th>
<th>P = 50%</th>
<th>ϕ_{H}^{bs}/ϕ_{O}^{sp}</th>
<th>P = 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>5.4</td>
<td>5.3</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high</td>
<td>2.5</td>
<td>4.6</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aThe first column shows the ratio obtained from our measurements, and the second and third column show the ratio computed according to sputter and backscatter theory for lunar surface regolith porosity values of \(P = 0.5 \) and \(P = 0.25 \), respectively.

\(\hat{\epsilon}_{\text{det}}^{\text{O}} / \hat{\epsilon}_{\text{det}}^{\text{H}} \) was determined to be equal to \(\sim 4.67 \cdot 10^{-2} \) and \(\sim 3.77 \cdot 10^{-2} \) for the two solar wind types. Since the sputter and the backscatter energy distribution functions are both normalized to one, the theoretical backscattered hydrogen to sputtered oxygen flux is given by

\[
\frac{\phi_{H}^{bs}}{\phi_{O}^{sp}} \bigg|_{\text{theo}} = R_{H} Y_{\text{sp}}.
\]

Table 4 lists the measured and the theoretical flux ratios for the low and the high helium groups, computed according to these two equations. The main errors for the measured ratios arise due to uncertainties in the detection efficiencies and from the fit procedure. We estimate to have a relative error of at least 30%.

5. Discussion

To resolve the mass spectra recorded by CENA, we first determined the spectral shapes of hydrogen, helium, oxygen, and UV. Whereas the reference spectra for helium and oxygen were determined from calibration data, the reference spectra for hydrogen and UV were newly determined from in-flight data. The hydrogen reference spectrum was computed from measurements that were conducted when the solar wind consisted of almost pure hydrogen and agrees well with previously determined hydrogen calibration data spectra. The UV spectral shape is flat, except for a small peak at the same position where hydrogen shows up. This peak can be attributed to the fact that the UV spectral shape was determined from actual in-flight data, which contains besides the UV contaminated signal also a small hydrogen signal. The otherwise flatness of the curve is well understood and has already been observed previously for similar instruments [Galli et al., 2006]. Fitting of the in-flight mass spectra with the different reference spectra resulted in the detection of a robust oxygen signal. Whereas the measured oxygen content could be easily compared with sputter theory, a further division of the oxygen signal into individual energy steps is statistically not feasible.

In a first analysis, we compared the oxygen content in CENA’s mass spectra, which were divided into two groups: One group contains mass spectra that were recorded when the solar wind consisted of almost pure hydrogen, and the other group contains mass spectra that were recorded when the helium fraction in the solar wind was very high. Since helium is a very effective sputter agent, a clear difference in the sputter yield for these two solar wind types is expected. In our analysis, though, this difference has been diminished to a large extent by the fact that the solar wind flux was more than 50% higher during the low helium group than during the high helium group. Overall, the high helium content solar wind type is supposed to sputter 20% more oxygen from the lunar surface than the low helium content solar wind type. The ratio computed from our measurements is, after having subtracted the respective backgrounds, \(\sim 1.6 \). As one can see from Figure 6, the curve belonging to the solar wind of type 1 drops of much sooner than the curve belonging to the solar wind of type 2. It is therefore well possible that we slightly underestimated the oxygen content in the low helium group. Considering the limited statistics and that the oxygen signal is very small compared to the hydrogen signal, our computed value is in very good agreement with the theoretical value.

In a second analysis, we compared the backscattered hydrogen flux to the sputtered oxygen flux. According to sputter and backscatter theory, this ratio should be equal to \(\sim 5.3 \) and \(\sim 4.6 \) for the solar wind conditions under which our measurements were conducted. The ratios obtained from our measurements are 5.4 and 2.5. As theory predicts, the low helium group has a higher hydrogen-to-oxygen ratio than the high helium group. Both values agree well with the predictions, especially when considering all approximations necessary to compute the theoretical values and the uncertainties contained in the measurements. In section 4
we mentioned that the porosity linearly scales the surface sputter yield. For more information on porosity and its expected influence on the sputter yield, we advise the reader to turn to Cassidy and Johnson [2005]. Wurz et al. [2007] mention that porosity values of 20% to 80% are plausible. If the porosity were reduced from 50% to 25%, the theoretical values would scale accordingly, i.e., become ∼ 2.7 and ∼ 2.3. As one can see from Table 4, our values lie somewhere between these theoretical values.

A robust helium signal was found to be present in the high-energy part of the mass spectra belonging to the high helium group. Since the backscattered helium content linearly scales with the solar wind helium content, it is not expected to be present in the low helium group mass spectra. The lack of a helium signal in the low helium group therefore agrees with backscatter theory. Solar wind helium has 4 times the energy of solar wind hydrogen. If the energy loss during interaction with the surface is similar for these two species, then backscattered helium should show up at 4 times the energy of backscattered hydrogen. Futaha et al. [2012] determined from CENA data a characteristic backscattered hydrogen energy of ∼ 100 eV. Helium should therefore show up at energies ∼ 400 eV. The presence of helium only at energies > 320 eV and the lack thereof at energies < 320 eV is therefore in agreement with backscatter theory.

It is difficult to make a quantitative analysis of the helium content similar to the one we presented for oxygen, since we do not have any information on CENA’s detection efficiency for helium. A simple estimation can help verify the credibility of this signal, though. Assuming that helium is backscattered from the lunar surface to the same extent as hydrogen, and that CENA’s detection efficiency is the same for these two species, a helium signal smaller than 5% of the hydrogen signal is expected. In reality, CENA’s helium detection efficiency is much smaller than CENA’s hydrogen detection efficiency because of the much higher ionization potential of helium. Moreover, the backscattered helium ratio is also expected to be smaller than the hydrogen ratio because helium impacts the lunar surface with 4 times the energy of hydrogen. Reflection ratios in the range (0.5–5) · 10⁻³ are therefore plausible. The measured helium to hydrogen ratio is, with being 0.37 · 10⁻³, compatible with these estimated values.

Our helium to hydrogen ratio yields a helium backscatter ratio of 1.4 · 10⁻¹, assuming a hydrogen backscatter ratio of 0.16. As noted above, this helium backscatter ratio is a lower limit, and we estimate that the actual value is about 10 times higher. Hoffman et al. [1973] presented Apollo 17 observations that inferred atmospheric helium number densities of 2 · 10⁶ m⁻³ for the lunar dayside. Based on our considerations, the backscattered helium density is estimated to be 10⁵–10⁶ times smaller than the thermal helium density. This makes it extremely difficult to distinguish backscattered helium from thermal helium in spectroscopic data. Because of the correlation of our helium signal with the solar wind helium content, the energy range at which the signal shows up, and the fact that thermal exospheric helium is of too low energy to be detected by CENA, we conclude that we observed for the first time backscattered helium in the lunar exosphere.
Wurz et al. [2007] computed for solar wind fluxes in the range \((2.0–2.7) \cdot 10^{12} \text{ m}^{-2} \text{ s}^{-1}\) and a helium content of 5\%, oxygen surface densities of \(~(6–10) \cdot 10^{6} \text{ m}^{-2}\) for different lunar soil types. Cook et al. [2013] recently presented an observational upper bound for oxygen of \(~5.4 \cdot 10^{6} \text{ m}^{-2}\) based on measurements conducted by the Lyman Alpha Mapping Project onboard NASA’s Lunar Reconnaissance Orbiter. With average solar wind helium contents, particle velocities, particle fluxes, and sputtered yields as presented in the last rows of Tables 1 and 2, oxygen subsolar surface densities of \(N_{\text{O}} = (1.1 \pm 0.3) \cdot 10^{7} \text{ m}^{-2}\) and \((1.4 \pm 0.4) \cdot 10^{7} \text{ m}^{-2}\), respectively, can be inferred from our results. Note that these densities are valid for the subsolar point, since we computed them assuming a hydrogen backscatter ratio of 16\%, which is valid for the subsolar point [Vorburger et al., 2013]. As the hydrogen backscattered ratio varies with the cosine of the solar zenith angle [Wieser et al., 2009], the oxygen surface density should also vary with the cosine of the solar zenith angle. It is possible that our results slightly overestimate the surface densities, but considering that the sputter yield directly scales with the solar wind particle flux and angle of arrival, our values agree very well with both model predictions and the observationally determined upper limits. Applying \(N_{\text{O}} / N_{\text{H}}\) ratios as determined from the model presented in Wurz and Lammer [2003], these surface densities result in column densities of \(N_{\text{O}} = (1.5 \pm 0.5) \cdot 10^{12} \text{ m}^{-2}\) and \((1.6 \pm 0.5) \cdot 10^{13} \text{ m}^{-2}\), respectively.

6. Conclusion

Here we presented the first direct measurements of sputtered lunar oxygen in the Moon’s exosphere, detected by the Sub-keV Atom Reflecting Analyzer onboard Chandrayaan-1. Based on our measurements, the backscattered hydrogen flux is 2.5 and 5.4 times higher than the sputtered oxygen flux, depending on the solar wind helium content and particle velocity. With a previously determined hydrogen backscatter ratio of 0.16, this results in total sputter yields of 0.03 and 0.06, respectively.

In addition, CENA conducted the first measurements of solar wind helium ions (alpha particles) that were backscattered from the lunar surface as neutral energetic helium atoms.

With average solar wind particle fluxes of \(3.70-10^{12} \text{ m}^{-2} \text{ s}^{-1}\) and \(2.22-10^{12} \text{ m}^{-2} \text{ s}^{-1}\), we inferred oxygen surface densities of \(N_{\text{O}} = (1.1 \pm 0.3) \cdot 10^{7} \text{ m}^{-2}\) and \((1.4 \pm 0.4) \cdot 10^{7} \text{ m}^{-2}\) and column densities of \(N_{\text{O}} = (1.5 \pm 0.5) \cdot 10^{11} \text{ m}^{-2}\) and \((1.6 \pm 0.5) \cdot 10^{11} \text{ m}^{-2}\) for the two solar wind types under which the measurements were conducted. These values agree well with model predictions and are consistent with a recently presented new observational upper bound for lunar oxygen surface density.

These first observations of sputtered lunar oxygen and backscattered solar wind helium atoms are a critical contribution for understanding the lunar exosphere origin and microphysics of plasma-surface interactions. Knowledge of these processes will be especially valuable for interpretation of the measurements of the Galilean Moons’ exospheres, which will be recorded during the Jupiter Icy Moon Explorer mission as of 2030.

Appendix A: Determination of CENA’s Detection Efficiency Ratio of Sputtered Oxygen to Backscattered Hydrogen

According to the definitions of CENA’s geometric factors, the ratio between CENA’s detection efficiencies for two different species is equal to the ratio between CENA’s geometric factors for these species

\[
\frac{\epsilon_{\text{O}}^{\text{det}}}{\epsilon_{\text{H}}^{\text{det}}} = \frac{GF_{\text{O}}(E)}{GF_{\text{H}}(E)},
\]

(A1)

where \(\epsilon_{\text{O}}^{\text{det}}\) and \(\epsilon_{\text{H}}^{\text{det}}\) are CENA’s detection efficiencies for oxygen and hydrogen, respectively, and where \(GF_{\text{O}}(E)\) and \(GF_{\text{H}}(E)\) are CENA’s geometric factors for oxygen and hydrogen, respectively.

CENA’s geometric factor for hydrogen has already been determined for certain energies (see below) [Wieser, 2012]. The difference in the geometric factor for oxygen and hydrogen mainly arises at the MgO conversion surfaces, where oxygen and hydrogen atoms are ionized with different efficiencies (cf. section 1). The geometric factor for oxygen, \(GF_{\text{O}}(E)\), can therefore, to a good approximation, be assumed to be equal to the geometric factor for hydrogen, \(GF_{\text{H}}(E)\), multiplied with the ratio of the positive oxygen and hydrogen ionization efficiencies of the MgO conversion surfaces, \(\epsilon_{\text{O}}^{\text{ion}}(E)\) and \(\epsilon_{\text{H}}^{\text{ion}}(E)\)

\[
GF_{\text{O}}(E) = GF_{\text{H}}(E) \cdot \frac{\epsilon_{\text{O}}^{\text{ion}}(E)}{\epsilon_{\text{H}}^{\text{ion}}(E)}.
\]

(A2)
Further, it can be assumed that the ratio of the positive ionization efficiencies for these two species is directly proportional to the ratio between the MgO conversion surfaces’ positive charge state fractions for oxygen and hydrogen, $C_{\text{ion}}^O(E)$ and $C_{\text{ion}}^H(E)$:

$$\frac{\varepsilon_{\text{ion}}^O(E)}{\varepsilon_{\text{ion}}^H(E)} = \frac{C_{\text{ion}}^O(E)}{C_{\text{ion}}^H(E)}. \quad (A3)$$

Charge state fractions for MgO surfaces were measured by Wieser et al. [2002]. To have a mathematical description of the charge state fractions these measurement points first had to be fitted. In the instrument calibrations no measurements were conducted below ~ 200 eV in the case of hydrogen and ~ 500 eV in the case of oxygen; thus, we do not know what shape the fit function should have at low energies. Theory and measurements [e.g., Los and Geerlings, 1990] suggest that an exponential function seems like an appropriate choice, though. Since, especially in the case of primary neutral oxygen, only few measurements for positive ionization were available, we included measurement points for primary O^+ and O_2^+ as well as H^+ and H_2^+. Inclusion of positively charged primary particles is supported by the fact that Wieser et al. [2002] obtained within the measurement uncertainties the same charge state fractions for primary neutral and ionized particles. Figure A1a shows the average measured $C_{\text{ion}}^O(E)$ (filled circles) and $C_{\text{ion}}^H(E)$ (open circles) and the computed best fits, which are given by

$$C_{\text{ion}}^O(E) = 146.95 \cdot \exp(E \cdot 3.30 \cdot 10^{-5}\text{eV}^{-1}) - 145.65$$
$$C_{\text{ion}}^H(E) = 25.81 \cdot \exp(E \cdot 1.62 \cdot 10^{-5}\text{eV}^{-1}) - 25.66. \quad (A4)$$

CENA’s geometric factor for hydrogen integrated over the solid angle, $G_{\text{F}_H}(E)$, was determined from CENA calibration data for eight different energies [Wieser, 2012]. These eight measurement points are presented in Figure A1b (filled circles), together with their best fit (solid line), which is given by the following equation:

$$G_{\text{F}_H}(E) = 1.44 \cdot 10^{-3}\text{cm}^2 + E \cdot 1.60 \cdot 10^{-1}\text{cm}^2\text{eV}^{-1}. \quad (A5)$$

Having derived a mathematical description of $G_{\text{F}_H}(E)$, CENA’s geometric factor for oxygen, $G_{\text{F}_O}(E)$, can be computed from equations (7) to (10). The thus obtained function is shown by the dashed line in Figure A1b.

As mentioned in the main text, since we are interested in the complete hydrogen-to-oxygen flux ratio, and not just in the flux ratio in CENA’s energy range, we have to take into account that CENA only covers a certain fraction of the backscatter and sputter energy distributions ($f_{\text{bs}}^O(E)$ and $f_{\text{sp}}^O(E)$). We thus introduce a new ratio, $\varepsilon_{\text{det}}^O / \varepsilon_{\text{det}}^H$, which is given by

$$\frac{\varepsilon_{\text{det}}^O}{\varepsilon_{\text{det}}^H} = \frac{\int_{3.3\text{keV}}^{13.3\text{keV}} \varepsilon_{\text{det}}^O \cdot f_{\text{bs}}^O(E) \text{d}E}{\int_{11.1\text{keV}}^{3.3\text{keV}} \varepsilon_{\text{det}}^H \cdot f_{\text{sp}}^O(E) \text{d}E} \quad \frac{\int_{3.3\text{keV}}^{13.3\text{keV}} \varepsilon_{\text{det}}^O \cdot f_{\text{bs}}^O(E) \text{d}E}{\int_{11.1\text{keV}}^{3.3\text{keV}} \varepsilon_{\text{det}}^H \cdot f_{\text{sp}}^O(E) \text{d}E}. \quad (A6)$$
that not only includes CENA’s detection efficiencies but also corrects for the limited energy range within which observations can be conducted. This ratio was computed for the two solar wind types to be equal to \(4.67 \times 10^{-2}\) and \(3.77 \times 10^{-2}\).

References

Wurz, P. (2001), Heavy ions in the solar wind: Results from SOHO/CELIAS/MTOF, Universitat Bern, Bern, Switzerland.

Acknowledgments

A. Vorburger and P. Wurz gratefully acknowledged the financial support by the Swiss National Science Foundation.

Solar wind parameters from the WIND spacecraft were used as a reference for this study. The authors thank K.W. Ogilvie (NASA/GSFC) and A.J. Lazarus (MIT) for providing WIND data. The efforts at Space Physics Laboratory, Vikram Sarabhai Space Centre, are supported by the Indian Space Research Organisation (ISRO).

Philippa Browning thanks the reviewers for their assistance in evaluating this paper.